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The possible excitation of synchronous edge waves by a monocromatic wave normally 
approaching a plane beach is studied. Use is made of the full three-dimensional 
water wave theory but only beach angles p = n/(2N),  where N is an integer, are 
considered. A weakly nonlinear stability analysis is used to investigate the interaction 
of subharmonic, synchronous and 3/2-frequency edge waves with the incoming wave 
field. It is shown that values of p exist for which an energy transfer from the 
incoming wave to the synchronous edge waves takes place through the intermediary 
of the subharmonic components. 

1. Introduction 
Several different mechanisms for edge wave generation on sloping beaches are 

possible. These trapped waves can be excited by external forces such as wind stresses 
acting directly above the water surface or uneven pressure distributions related to 
storms travelling parallel to the coast or by transient incident waves. 

Edge waves may also be excited by a normally incident monochromatic wave 
through an instability mechanism. Indeed Guza & Davis (1974), by using the shallow 
water approximation, showed that a wave train of angular frequency a*, which 
is normally incident on a straight beach of constant slope f i ,  may transfer energy 
to small disturbances in the form of edge waves subharmonic with respect to the 
incoming wave, i.e. characterized by angular frequency w'/2. Nonlinear effects 
were investigated and an equilibrium state was predicted by means of a weakly 
nonlinear stability theory by Guza & Bowen (1976). Later Minzoni & Whitham 
(1977) analysed the same instability problem using the full three-dimensional water 
wave theory. The above work shows that in this case the non-uniformity of the 
shallow water approximation far from the shore described by Whitham (1976) and 
Minzoni (1976) is mild and does not affect the main results for small beach angles. 
More recently Miles (1990) using the shallow water equations has tackled the problem 
for a beach profile that descends smoothly from a shoreline depth of zero and slope f i  
to an offshore small depth h,, thus avoiding the inconsistency of the model by Guza 
& Davis (1974) far from the shoreline. 

While the presence of subharmonic edge waves in the nearshore region is thus 
explained, much less is known on edge waves which are characterized by the same 
angular frequency as that of the incoming wave field (synchronous edge waves). The 
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presence of synchronous edge waves was observed experimentally by Galvin (1965) 
and Guza & Inman (1975) among others. Rockliff (1978) showed that synchronous 
edge waves can be excited by a mechanism similar to that described by Guza & 
Davis (1974). However her approach takes into account steady and ultraharmonic 
components of the incoming wave field. It turns out that the amplification rate of 
synchronous edge waves and their equilibrium amplitude are an order of magnitude 
smaller than those characterizing the subharmonic edge waves. Indeed if a denotes 
a small parameter related to the steepness of the incoming wave, the growth of 
subharmonic edge waves takes place on the slow time scale at', while synchronous edge 
waves are shown by Rockliff (1978) to grow with a rate of order a2t*. Moreover the 
final equilibrium amplitudes are O ( U ' / ~ )  and O(a) for subharmonic and synchronous 
edge waves respectively. 

In the present work an alternative mechanism for the excitation of synchronous 
edge waves is described which takes into account, by means of a weakly nonlinear 
analysis, not only the interaction of free modes with the incoming wave but also 
nonlinear interactions between different free modes. Use is made of the full three- 
dimensional water wave theory. It is found that the nonlinear effects may transfer 
energy from the subharmonic to the synchronous modes when suitable transverse 
wavelengths are considered. This energy transfer can cause the growth of both 
the synchronous and subharmonic modes. The possibility of subharmonic external 
resonance coupled with synchronous internal resonance has been already analysed in 
different contexts and in particular for the so-called 'Faraday resonance' problem. For 
a review on this topic see Miles & Henderson (1990). The dispersion relation of the 
free edge wave modes shows that a subharmonic-synchronous coupling is possible 
for sufficiently small values of the beach slope p. Particular values of f i  might also 
lead to the excitation of modes characterized by an angular frequency which is 3 / 2  
times that of the incoming wave and possibly of higher frequency modes. In this 
case a more complicated system of coupled amplitude equations would be obtained. 
Here only the coupling among edge waves characterized by frequencies 0'12, W* and 
30'12 is considered. 

The results show that values of the beach slope p exist such that synchronous edge 
waves can grow with an amplification rate of the same order of magnitude as that 
of subharmonic modes. Moreover the results indicate that values of the parameters 
exist such that the amplitudes of both the subharmonic and synchronous modes tend 
to become much larger than that of the incoming wave. In such cases an equilibrium 
configuration may be found by resorting to a full nonlinear approach. 

The problem is of practical interest due to the role that synchronous edge waves 
can play on beach cusp formation. Indeed, although there is still some controversy 
as to the cause of beach cusp formation (Werner & Fink 1993), it seems reasonable 
to relate the appearance of beach cusps to the presence of steady currents periodic 
in the longshore direction. The interaction between synchronous edge waves and 
the incoming wave provides the simplest explanation for the generation of steady 
recirculating cells periodic in the longshore direction which in turn may modify 
bottom topography and the shoreline configuration. 

The procedure used in the rest of the paper is as follows. In the next section we 
formulate the problem and in $3 we present the linear solution for the incoming wave 
field. The free edge wave modes and their interaction with the incoming wave, taking 
into account nonlinear effects, are considered in $4 where amplitude equations for the 
time development of a particular set of resonating edge waves are obtained. Finally, 
some results are presented and discussed in $5. 
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2. Formulation of the problem 
Let us consider a straight and infinitely long beach, with the bottom sloping 

downward offshore at a constant rate tanp. The special values of f l  = n/(2N), N 
being a positive integer, will be considered in the following in order to find more 
explicit results. Orthogonal Cartesian coordinates are introduced with the x'-axis 
lying on the still water surface and being directed offshore, the yo-axis coincident 
with the coastline and the 2'-axis pointing upward. Let us then consider a normally 
incident monochromatic wave of angular frequency a* which is perfectly reflected by 
the beach. 

If the flow induced by the wave is supposed to be irrotational, the dimensionless 
problem for the velocity potential 4 and the free surface displacement q is posed by 
the Laplace equation 

and the following boundary conditions : 

for z = -x tanp, a4 a4 
ax  a Z  

sinp- +cosp- = 0 

(2.3) %!+q+; at [(g)2+(32+(g)2] = o  for z = q,  

where g / ( o ' ) 2  is used as a length scale, l/o* as a time scale and the quantity g 2 / o ' 3  
as scale for the velocity potential. In the above definitions g is acceleration due to 
gravity. 

3. The basic wave field 
If the steepness of the incoming wave is assumed to be much smaller than one, the 

velocity potential associated with the standing wave generated by the superposition 
of the incoming and reflected waves can be expanded in terms of the small parameter 
a = a'o'2/g, if a* denotes the amplitude of the steady wave at the shoreline: 

(3.1) 

Since g / o * 2  is the order of magnitude of the wavelength of the approaching wave 
(indeed o ' 2 / g  is its wavenumber in the deep water region) and a* is proportional to 
its amplitude (see the paragraph after relationship (3.5)), the parameter a is related 
to the steepnes of the incoming wave. 

4 = a 4 m f  a2401 + 0(a3) .  

The solution of the linearized problem reads (Stoker 1957, pp. 77-84) 

exp[am(x + iz)] + C.C. eit + C.C. I 
where 
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dl = &, (3.4) 

gm = exp [in (: + k)] , (3.5) 

and C.C. denotes the complex conjugate of the fore-going terms and an overbar over 
a quantity denotes its complex conjugate. 

Notice that the solution for the velocity potential described in Stoker (1957) is 
defined but for the presence of an arbitrary multiplying constant the value of which 
can be determined by fixing the amplitude of the surface oscillations which here is a* 
at X* equal to zero. The relationship between a' and the amplitude a* of the incoming 
wave can be found by looking at the behaviour of 400 for x + GO. Indeed 400 far 
away from the shoreline tends to become the velocity potential of a standing wave of 
amplitude u ' / N ' / ~ ,  hence a* turns out to be u * / ( ~ N ' / ~ ) .  

4. The time development of edge waves 

basic wave field and decaying for x + GO. 

can be used to express the perturbed velocity potential: 

Let us now consider a perturbation of small amplitude E ,  superimposed on the 

If E is assumed to be much smaller than one, the following two-parameter expansion 

4.1. Linear analysis 
By substituting (4.1) into (2.1)-(2.4) and considering terms of O(E) ,  a problem for 
410 is obtained which of course turns out to be a linear eigenvalue problem. It is 
worth pointing out that 410 describes the time development and spatial distribution 
of the leading-order term of the velocity potential associated with the perturbation. 
A normal mode analysis in the longshore direction can be applied and the generic 
component of the initial perturbation can be found (Ursell 1952): 

h 

+lo(x,y,z;k,n) = exp[i(ky + ot)] exp[-k(xcosp - z sinp)] 

1 + exp[-k(xcos((2rn + 1)p) - z sin((2rn + l)p))]} 

= exp [i(ky + ot)] ~ ( x ,  z )  (4.2) 

where 
tan(n - G + 1)p 

tan(n+G)p ' 

m 

v m n  = ( - l )m I-J 
c=i 

(4.3) 

The longshore wavenumber k is related to the angular frequency o by the dispersion 
relation (eigenrelation) 

o2 = k sin(2n + 1)p, n = 1,2, . . . ,M (4.4) 
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where, for a fixed slope p, the number JV of modes is the greatest integer contained 

The values of D turn out to be real showing that linear edge waves neither amplify 
nor decay but simply propagate along the coast, i.e. they are marginally stable. 
A growth of the edge waves may take place as described in the following if the 
interaction with the incoming wave is taken into account. Equation (4.4) shows that 
the Stokes edge wave appearing for n = 0 in (4.4) (Stokes 1846) is not the only 
discrete mode, but the first of a sequence. Hence the complete solution for 410 is 
given by 

in ~ 2 )  + ( 4 4 ~ ) i .  

+m 4v 

--oo fl=O 
( P I o ( ~ ,  Y ,  z, 4 = / A@, n)&o(x, Y ,  z, t ;  k ,  n)dk (4.5) 

where A is an amplitude function. 

4.2. Nonlinear interactions 
When the expansion (4.1) is substituted into the problem (2.1)-(2.4), the nonlinear 
couplings originate different quadratic terms which can be denoted by their possible 
combinations: a2(c$m, $m), ea(&, $m), ~ ~ ( $ 1 0 , 4 1 0 )  plus terms of higher order which 
are also generated by cubic interactions. In non-resonant cases a solution of the 
problems for 401,411,420 forced by the above terms can be easily found. In particular 
the interaction of the basic wave field with itself (a2(&,, 400)) gives rise to a component 
of the velocity potential of angular frequency 20' and to a steady part. The term 
ea(410, 400) produces a slight modification of the original perturbation. Finally, the 
term e2(#10, 410) originates different effects and in particular an outgoing progressive 
wave of frequency 20 : therefore the perturbation leaks energy to the far field at order 
e2 (Guza & Bowen 1976; Minzoni & Whitham 1977). 

But in the special cases in which the nonlinear forcings ea(&, $w), ~~(410,410) give 
rise to terms characterized by an angular frequency and a longshore wavenumber 
satisfying (4.4) resonance occurs. Many resonanting cases exist. 

As discussed by Guza & Davis (1974) and Minzoni & Whitham (1977) the term 
ea(&,+m) gives rise to resonance in particular when subharmonic edge waves are 
considered, i.e. when 0 = 1/2. In this case an energy transfer from the basic wave 
to the edge waves takes place which induces an exponential growth of edge wave 
amplitude on a temporal scale equal to at'. As discussed by Minzoni & Whitham 
(1977) when the edge wave amplitude increases, the cubic terms become important 
and limit the final amplitude. An order of magnitude argument leads to the conclusion 
that the final equilibrium amplitude is characterized by an order of magnitude equal 
to a1'2. 

However, these findings rest on the assumption that no other resonant interaction 
takes place. When the interaction among subharmonic, synchronous and ultrahar- 
monic components of the perturbation is taken into account, a different mechanism 
may take place which transfers energy from the subharmonic modes to the syn- 
chronous ones and eventually to ultraharmonic modes. Indeed the term e2(&, 410) 
may also give rise to resonance at least for particular values of p. 

In order to illustrate resonance conditions let us first consider two subharmonic 
modes propagating in opposite directions and characterized by a wavenumber we 
denote kl .  The dispersion relation (4.4) shows that for suitable values of p, a pair of 
synchronous modes propagating in opposite directions exists which is characterized 
by a transverse wavenumber k2 which differs from 2k1 by a small amount. In other 
words for particular values of p it is feasible to consider synchronous edge waves 
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characterized by a longshore wavenumber 
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k2 = 2k1 + ap2. 

The term ap2, with p2 a parameter of order one, takes into account the small 
mismatch between k2 and 2kl. It can be easily appreciated that the interaction among 
the above-described subharmonic and synchronous modes gives rise to resonance. 
Indeed the interaction of the subharmonic mode propagating in the positive/negative 
longshore direction with itself gives rise to the synchronous mode propagating in the 
same direction, while the interaction of a synchronous mode with a subharmonic one 
propagating in the same direction gives rise to the subharmonic component itself. 
The possibility of subharmonic-synchronous internal resonance (Simmons 1969) has 
been studied in the past in different contexts (see for example Miles & Henderson 
1990). 

In general it is possible to single out values of f l  such that pairs of edge waves 
appear the angular frequency of which is equal to +m/2, with m an integer larger 
than 1, and their transverse wavenumbers km are close to mkl, i.e for these particular 
values of p it can be assumed 

(4.7) 

(4.6) 

k, = mkl + apm, m = 2,3,4 ,.... M 

where M depends on a and p. As previously pointed out, it can be recognized 
that the nonlinear interaction of such free modes leads to resonance. For example if 
M = 3, the interaction of the subharmonic mode propagating in the positive/negative 
direction with the synchronous mode propagating in the same direction gives rise to 
the edge waves characterized by the frequency equal to 3/2. Moreover, as before, the 
interaction of the subharmonic modes with themselves originates synchronous edge 
waves and so on. A more detailed discussion of resonance is given, for example, in 
Miles & Henderson (1990). Since for particular values of p the condition (4.7) may 
be satisfied by a second pair of edge waves with the same angular frequency but with 
a different mode numbers, the wavenumbers of the two pairs will be denoted by kg) 
and k:) respectively while up:) and a&) are their distances from mkl. By considering 
smaller values of p and allowing fairly large values of a more pairs of edge waves 
satisfying (4.7) may be found. However, in the present work attention will be focused 
on values of N such that only two pairs are resonating. 

Of course the internal resonances just described take place at order e2 while the 
external resonance between the subharmonic edge waves and the basic wave field is 
present at order ea. Hence when an infinitesimal perturbation is considered only the 
external resonance is effective. However, the latter resonance leads to a growth of 
the perturbation and when it becomes of O(a),  i.e. before reaching its equilibrium 
amplitude which is of order all2, the external resonance couples with the internal one. 
This coupling may limit the growth of the subharmonic components and trigger that 
of the synchronous ones, a mechanism which could not be described by the scheme 
of Minzoni & Whitham (1977). 

The final aim of the present work is to show that for particular values of the beach 
slope and of the incoming wave amplitude, the growth of synchronous modes can be 
triggered by their interaction with subharmonic edge waves. Hence in order to keep 
the analysis as simple as possible, we would like to neglect the possible interactions of 
the subharmonic and synchronous edge waves with modes characterized by an angular 
frequency equal to +m/2, with m equal to 3,4, .... M ,  and a longshore wavenumber 
described by (4.7). However, starting from p = n/4 and considering increasing values 
of N ,  the first value N1 of N which causes the resonance of synchronous modes 
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for fairly large values of a, leads also to the coupling of modes characterized by an 
angular frequency equal to 3/2; therefore the ultraharmonic modes with frequency 
3/2 will be included in the analysis. Hence let us consider the time development of 
the following perturbation fixing, for the reasons explained above, O ( E )  = O(a): 

where the functions yy),y$ are defined by (4.2) with k equal to k i )  and k:) respec- 
tively. 

In (4.8) Akm,Bkm denote the amplitudes of the edge waves characterized by an 
angular frequency m/2 and the + and - signs indicate the negative and positive 
directions of edge wave propagation respectively. It is further assumed that A+,,,, B+, 
depend on a slow temporal scale z = at and on the slow spatial scale c = ay. The 
slow temporal scale z is introduced in order to describe the slow growth of edge 
wave amplitudes due to the O(a) energy transfer from the basic standing wave. The 
interaction of edge waves characterized by wavenumbers satisfying (4.7), where a 
small mismatch is present, leads to slow modulations in the longshore direction which 
require the introduction of the spatial scale 5. Note that although it is possible to 
introduce the slow variable ax as well, this is unnecessary and no greater generality 
is obtained. 

At order a equations (2.1)-(2.4) are identically satisfied by expansion (4.8). 
At order a2 equations (2.1) and (2.2) give 

d2(40l + 411 + 4 2 0 )  + a2(401 + 411 + 420)  + a2(401 + 411 + 420)  

ax2 a Y 2  a z 2  

= O  d(401+ 411 + 4 2 0 )  + cos d(401 + 411 + 4 2 0 )  sin p 
ax az 

while the boundary condition (2.3) combined with (2.4) yields 

at z = -xtgp, (4.10) 

(3401 + 411 + 4 2 0 )  + a 4 0 1  + $11 + 4 2 0 )  = R(x,y, t) 
az at2 

at z = 0. a2&0 8 4 ~  a34e0 
a z 2  at azat2 at 

+--- +-- (4.11) 

The forcing terms on the right-hand sides of (4.9) and (4.11) suggest for (401+411+420) 
a temporal and longshore dependence of the form 

~ k $  ; E!!e+ir ; '+re ( 4 )  -it ; E(q)E(t) +r ks 7 . Eir (q)E(t)  +s ; C.C. (4.12) 

plus steady and ultraharmonic contributions which do not depend on y.  In (4.12), EfA 
is equal to exp [i ( k 2 ) y  f (m/2)t)] and the indexes q,r,s,t should be allowed to vary 
in the ranges ( q  = 1,2;t = 1,2;r = 1,2,3;s = 1,2,3; moreover k y )  = kl and &) = 
0 with j = 1,2). 
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Since kg) = mkl + up:) (m = 2,3; j = 1,2) and because of the dispersion relation 
(4.4), a solvability condition is required for the problem (4.9)-(4.11). Indeed since 
y$)E& are solutions of the homogeneous problem (2.1)-(2.4), there is a bounded 
solution for (q501 + $ql + 4 ~ ~ 0 )  if and only if the following orthogonality conditions are 
satisfied : 

m = 1,2,3 if j = 1, m = 1,2 if j = 2, 
where the function R is defined by (4.11). 

These conditions are similar to the well-known Fredholm alternative theorem for 
the simpler eigenvalue problem of ordinary differential equations. A derivation of 
(4.13) is given in Minzoni & Whitham (1977). This procedure leads to a system 
of partial differential equations which governs the development of the amplitude 
functions A+,(z, c )  and B,,(z, c )  in the slow temporal and spatial scales: 

The expressions which give the coefficients as functions of the parameters of the 
problem are very lengthy and their derivation is tedious but straighfonvard. For the 
sake of brevity, they are given in the Appendix. The values of u t )  and ug) are related 
to the group velocity of the free modes, the coefficient a1 describes the energy transfer 
from the incoming wave to the subharmonic modes, while all the other coefficients 
result from the nonlinear interactions. It is worth pointing out that all the coefficients 
turn out to be real. 

Obvious simplifications in the system (4.14)-(4.18) are present when some of the 
modes considered in (4.8) are not resonating. 
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The solution of (4.14)-(4.18) describes the slow time development and longshore 
modulation of the amplitudes of the edge waves (4.8) which exchange energy among 
each other through nonlinear interactions and extract energy from the incident wave 
field through the intermediary of the subharmonic modes. 

The [-dependence of the coefficients of the partial differential equations (4.14)- 
(4.18) can be removed simply by defining the new variables A"+, = A+, exp[Cljn')C] and 
B+, B+, exp[&)[] with m = 2,3. It is thus possible to look for special solutions of 
&,,B+,-which do not depend on [. By focusing on the special case of amplitudes 
&,B, which do not depend on [, a system of amplitude equations is found where 
A"+,, Bfm replace A,,, Bkm, the coefficients are constants and the partial derivatives 
with respect to [ vanish. This is the system of amplitude equations, the solutions of 
which is described in the following. 

5. Discussion of the results 
Before presenting the results, it is necessary to briefly discuss the relevance of the 

theory and its range of applicability. The problem is characterized by the presence of 
the parameter N which is equivalent to the beach slope p ( p  = 71/(2N)). As previously 
pointed out, if sufficiently large values of N are considered, the couplings described 
above are possible or not depending on the value of a, ,urn being a parameter of order 
one. However, as in all perturbation approaches, it is not possible to quantify exactly 
the limiting values of a and the results to be described should be interpreted as 
giving an indication of the qualitative behaviour of the solution in different possible 
regimes. For example the dispersion relation (4.4) shows that for N = 10, the coupling 
between the subharmonic modes with n = 1 and the synchronous modes with n = 3 
takes place if fairly large values of a but smaller than one are considered. Moreover 
when increasing values of a are considered resonance is affected by the 3/2-frequency 
components with n = 4. Hence for this particular value of N three broad regimes 
(denoted Regimes I, I1 and 111 respectively) can be identified when increasing values 
of a are considered. 
(1) Regime I: no coupling is possible and the time development of Akl turns out 
to be that described by Minzoni & Whitham (1977), while the synchronous and 
3/2-frequency edge waves neither grow nor amplify. 
(2) Regime I1 : the subharmonic-synchronous edge wave interaction takes place 
and the solution of the system (4.14)-(4.18) shows that both the subharmonic and 
synchronous edge waves grow. 
(3) Regime 111: the interaction mentioned above is affected by the 3/2-frequency 
components and by other synchronous edge waves. In this case the synchronous 
modes are damped and there is an energy transfer from the subharmonic components 
to the 3/2-frequency edge waves which consequently grow. Moreover other couplings 
are possible as described in more detail in the following. 

It should be pointed out that from a practical point of view only modes which 
satisfy condition (4.7) with a maximum relative error of 50% have been considered. 

The nonlinear complex system of ordinary differential equations (4.14)-(4.18) is 
solved numerically here. A fourth-order Runge-Kutta scheme is used to obtain 
computational results for different beach slope p and different initial conditions. 
Representative numerical solutions are presented in the following. In order for the 
theory to be meaningful, limits should be forced to the amplitude functions. Indeed 
for the expansion (4.8) to be rational the quantities aA+, and a&, should be much 
smaller than one. For this reason the numerical integration has been stopped as soon 
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FIGURE 1. Time development of the modulus of the amplitudes &,(m = 1,2,3) for N = 4 and 
a = 0.1. For the subharmonic, synchronous and 3/2-frequency edge waves, the modes with n = O,l,l 
(see (4.4)) respectively are considered. The initial values of the amplitudes are A"+,(O) = (0.05,O). 

z 

as a&, or a&, exceeds values of order one. Indeed only a fully nonlinear solution 
can give indications about the time behaviour of the solution for large amplitudes. 
Since qualitatively different behaviours of the solution are found on varying the 
slope of the beach p, in the following the results will be described for each value of 
N. 

N c 4  
No resonance is possible for values of N smaller than 4, indeed in this case neither 

the condition k2/2 = kl nor the condition k3 /3  = kl are satisfied even when fairly 
large values of a are considered. For such values of N, the theory of Minzoni & 
Whitham (1977) applies. 

N = 4,5 
For N = 4, the coupling among subharmonic modes with n = 0 in (4.4), the 

synchronous and 3/2-frequency modes both with n = 1 becomes possible but only 
for fairly large values of a. In this case equations (4.16) and (4.18) disappear from the 
system (4.14)-(4.18). Because of the sensitivity of the results to the initial conditions, 
an exhaustive numerical investigation has been performed varying a+,(O) even though 
attention has been focused on small values, since at the initial stages edge waves are 
only small perturbations of the incoming wave field. In all cases the numerical results 
show that no energy transfer takes place from the subharmonic to the other edge 
waves. An example of the results is shown in figure 1. Hence the analysis leads 
to the conclusion that the exponential growth of the subharmonic modes predicted 
by Minzoni & Whitham (1977) (see figure 2) is almost unaffected by the nonlinear 
interaction with the other modes. Similar results are obtained for N = 5. 

N = 6,7 
Table 1 shows the wavenumbers kl,k2,k3 for the three possible values of n and 

for 0 = 1/2,1,3/2 and N = 6. Two different couplings are possible even though 
they take place for fairly large values of a but smaller than one. Case 1 :  the two 
subharmonic edge waves with n = 0, the synchronous edges with n = 1 and the 
pair with n = 2, the four 3/2-frequency edge waves with n = 1 and n = 2. Indeed 
the relative distance of the wavenumbers of the synchronous edge waves with both 
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FIGURE 2. Time development of the modulus of the amplitudes A"+$ for N = 4 and a = 0.1. The 
nonlinear couplings are neglected and for the subharmonic edge waves the mode with n = 0 (see 
(4.4)) is considered. The initial values of the amplitudes are &(0) = (0.05,O). 

a,, = 112 1 312 
n 
0 0.97 3.86 8.69 
1 0.35 1.41 3.18 
2 0.26 1.04 2.33 

TABLE 1. Wavenumber k for different values of n, an and for N = 6. 

n = 1 and n = 2 from twice the wavenumber kl of the subharmonic edge waves 
with n = 0 turns out to be lky)  - 2k11/2kl = 0.27 and Ikf) - 2k11/2kl = 0.46 and the 
relative distance of the wavenumbers of the 3/2-frequency edge waves with n = 1,2 
from 3kl is - 3k11/3kl = 0.09 and Iky) - 3k11/3kl = 0.20 respectively. Case 2: 
the two subharmonic edge waves with n = 1 and the synchronous pair with n = 2 
(I@) - 2k11/2kl = 0.49). In case 1 results similar to those previously described are 
obtained, i.e. only the subharmonic edge waves increase their amplitude. It should 
be pointed out that in this case the time behaviour of the components described by 
(4.8) is affected by the edge waves characterized by 0 equal to 2 and 5/2 with n = 2 
in (4.4). By considering the index m appearing in (4.8) ranging up to 5, it has been 
verified that the inclusion of the components characterized by CT = 2, 5/2 does not 
modify the qualitative behaviour of the results previously described. The details are 
not described for brevity. The resonance of the modes characterized by CT = 2, 5/2, 
.... is also present for larger values of N but only when the subharmonic modes 
with n = 0 in (4.4) are considered. Also in these cases it has been verified that their 
presence does not modify the results obtained on the basis of (4.8). 

When case 2 is considered, qualitatively and quantitatively different results are 
obtained with respect to the dependence of the magnitude and phase of the edge 
wave amplitudes. If propagating edge waves are considered (i.e. A+,(O) # X-,(O)), 
an energy transfer from the subharmonic modes to the synchronous ones takes place 
which causes the rapid growth of the latter modes (see figure 3). When steady 
edge waves are considered or equivalently when the initial values of the amplitudes 
are such that A"+,(O) = T-,(O), a periodic behaviour is found (see figure 4). In 
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0 50 100 150 200 

FIGURE 3. Time development of the modulus of the amplitudes &,(m = 1,2) for N = 6 and a = 0.1. 
For the subharmonic and synchronous edge waves, the modes with n = 1,2 (see (4.4)) respectively 
are considered. The initial values of the amplitudes are A*,(O) = (0.05,0.05). 
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FIGURE 4. 4s figure 3 but the initial values of the amplitudes are 
A+,(O) = (0.01,0.01), A-,(O) = (0.01, -0.01). 

z 

this case the solution attains a regime configuration with A"f2 of order one. If the 
solution is obtained for a longer time, modulations of the amplitude functions are 
present. However, such modulations are characterized by a quite long period and 
call for a further slow time scale to be properly described. It is worth pointing 
out that when the conditions a+,(O) = Z-,(O) are not exactly satisfied, the small 
perturbations superimposed on the initially steady edge waves amplify and lead to 
the explosion of both the subharmonic and synchronous modes (see figure 5).  Finally, 
qualitatively different solutions are found when &,(O) are all real. In this case 
the amplitude functions attain a steady configuration with vanishing subharmonic 
modes and synchronous modes of amplitude order one (see figure 6). However, this 
steady solution is unstable and it is found because there is no numerical mechanism 
triggering the imaginary parts of a+,. When small imaginary contributions are given 
to A"*,,,(O) the solution shifts towards those previously described, i.e. both A*, and 
4 2  show an explosive behaviour. 

These numerical findings are supported by an analysis of the fixed points of 
the system (4.14)-(4.18). Indeed when only two subharmonic and two synchronous 
modes propagating in opposite directions are considered, the fixed points of the 
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0 100 200 300 400 
z 

FIGURE 5. As figure 3 but the initial values of the amplitudes are A”+,(O) = (0.01,0.01), 
A-,(O) = (0.01OOO1, -0.010001),A+~(0) = (0.01,0.01), A-z(O) = (0.009999, -0.00999). 

0 100 200 300 400 500 
t 

FIGURE 6. As figure 3 but the initial values of the amplitudes are &JO) = (0.01,O). 

system (4.14)-(4.18) can be easily evaluated. It turns out that 

A$ = 0; A‘f3 ,A”!; = const. (5.1) 
where the superscript denotes equilibrium conditions. With a proper choice of the 
origin of the y-axis, 24 can be made real. In order to study the stability of these fixed 
points the nonlinear system (4.14)-(4.18) can been linearized in the neighbourhoods 
of 2:; and 2:; and the time derivative of the amplitudes of small perturbations 
superimposed on the steady states are thus proportional to the perturbations them- 
selves through the Jacobian matrix of the system (4.14)-(4.18). The Routh-Hurwitz 
criterion applied to the polynomial which provides the eigenvalues of the Jacobian 
matrix shows that the fixed points are unstable. Indeed four eigenvalues turn out to 
be equal to zero, two are negative but the last two are positive. 

For a beach slope f i  = n/14, i.e. for N = 7, the results are similar to those found 
for N = 6. 

N = 8,9 
For N = 8 and N = 9, the results are qualitatively similar to those described for 

N = 6 and N = 7 but for the synchronous edge waves with n = 3 replacing those 
with n = 2. 
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0" = 1/2 1 3/2 
n 
0 1.60 6.39 14.38 
1 0.55 2.20 4.96 
2 0.35 1.41 3.18 
3 0.28 1.12 2.53 
4 0.25 1.01 2.28 

TABLE 2. Wavenumber k for different values of n, on and for N = 10. 

r 
FIGURE 7. Time development of the modulus of the amplitudes &,(m = 1,2) for N = 10 and 
a = 0.1. For the subharmonic and synchronous edge waves, the m_odes with n = 1,3 (see (4.4)) 
respectively are considered. The initial values of the amplitudes are A*,(O) = (0.05,0.05). 

N = 10 
A richer range of results is obtained for N = 10. Table 2 shows the wavenumbers 

kl,  k2,  k3 for 0 = 1/2,1,3/2 respectively and for the five possible values of n and allows 
the relative distance of k$) from rnkl(j = 1,2; m = 2,3) to be evaluated. 

As previously pointed out, the time development of the different edge wave modes 
depends on the amplitude of the incoming wave. When a is quite small, the nonlinear 
interactions described in the present work are absent, since conditions (4.7) cannot be 
satisfied with p,,, of order one. On increasing a, the coupling among the subharmonic 
edge waves with n = 1 and the synchronous ones with n = 3 becomes possible. An 
example of the results is plotted in figure 7 and shows that an energy transfer from the 
subharmonic modes to the synchronous ones is present but is weak and negative at 
the beginning. Hence the synchronous modes after an initial decay significantly grow 
only when the subharmonic ones attain quite large amplitudes and the analysis has 
no longer any physical meaning. A further increase of a leads to different situations. 
Case 1: the coupling just described is affected by the presence of a second pair of 
synchronous modes with n = 4 in (4.4) and by the 3/2-frequency modes with n = 4. 
Also in this case the growth of the synchronous modes is not triggered. Case 2: the 
subharmonic edge waves with n = 0, the synchronous edge waves with n = 1 and two 
pairs of 3/2-frequency edge waves with n = 1 and n = 2 respectively interact. This 
case gives results similar to those obtained for the same coupling but for smaller N 
(see figure 8). Case 3: the subharmonic edge waves with n = 2 and the synchronous 
edge waves with n = 4 resonate. This case gives further support to the conclusion that 
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FIGURE 8. Time development of the modulus of the amplitudes &,(m = 1,2) for N = 10 and 
a = 0.1. For the subharmonic, synchronous and 312-frequency edge waves, the modes with n 
= 0,lJ and 2 (see (4.4)) respectively are considered. The initial values of the amplitudes are 

z 

A*,(O) = (0.01,O). 

z 

FIGURE 9. Time development of the modulus of the amplitudes &,(m = 1,2) for N = 10 and 
a = 0.1. For the subharmonic and synchronous edge waves, the m-odes with n = 2,4 (see (4.4)) 
respectively are considered. The initial values of the amplitudes are A*,(O) = (0.05,0.05). 

the interaction of subharmonic modes with synchronous ones without the presence 
of 3/2-frequency components may lead to the growth of edge waves with the same 
frequency as the incoming wave. Indeed the results plotted in figure 9 show a rapid 
grow of A+2. Also in this case a regime configuration can be found when the initial 
values are such that A"-,,, = A"+,,, (see figure 10). 

N > 10 
Of course on increasing N ,  i.e. considering smaller values of p, the complexity 

of the problem increases and the expansion (4.8) does not contain enough modes to 
be able to take into account all the possible interactions which may take place for 
relatively large values of a. Only if a is extremely small is the system (4.14)-(4.18) still 
adequate to describe the nonlinear interactions of different modes. For example when 
N = 30 and a assumes values of about lop2 the following couplings are possible: 
case 1, the subharmonic modes with n = 5,  the synchronous modes with n = 5 and 
the 3/2-frequency modes with n = 8; case 2, the subharmonic modes with n = 3 

- - 
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FIGURE 10. As figure 9 but the initial values of the amplitudes are 
z 

A+JO) = (0.01,0.01), A-,(O) = (0.01, -0.01). 

and the synchronous modes with n = 7; case 3, the subharmonic modes with n = 4 
and the synchronous modes with n = 10 and 11. However, when increasing values 
of a are considered, there are many more synchronous and 3/2-frequency modes all 
interacting with a given subharmonic mode. A full nonlinear calculation is called for 
at this stage. 

6. Conclusions 
A nonlinear mechanism has been outlined which can trigger the growth of syn- 

chronous edge waves on a plane reflective beach subject to a normally incident 
monochromatic wave. 

Indeed values of the beach slope and of the incoming wave amplitude exist such 
that an energy transfer takes place from the incoming wave to the synchronous edge 
waves through the intermerdiary of subharmonic components. 

This mechanism may coexist with that described by Rockliff (1978) which however 
causes the growth of synchronous edge waves on a temporal scale much longer than 
the present one. Moreover the equilibrium amplitude of the synchronous edge waves 
considered by Rockliff (1978) is much smaller than that of the subharmonic ones 
which are present for the same conditions. On the contrary, even though the system 
(4.14)-(4.18) does not lead to any equilibrium configuration (except for some particular 
cases), the theory suggests that the considered subharmonic and synchronous edge 
waves are characterized by amplitudes with the same order of magnitude which 
usually is larger than that of the incoming wave. Hence a theoretical explanation 
of the experimental observations by Galvin (1965), Guza & Inman (1975) and other 
authors is provided. An order of magnitude analysis of the problem (2.1)-(2.4) reveals 
that the regime configuration, which is attained by subharmonic and synchronous 
edge waves growing because of their mutual interaction, cannot be found by means 
of a weakly nonlinear analysis but only by resorting to a numerical solution of the 
full problem. 

Moreover the results seem to indicate that for small beach slope the nonlinear 
interactions become very complicated. Numerical investigations of the phenomenon 
as well as further experimental observations can provide further insight into the actual 
process occurring in the latter regime. 
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Appendix 

b5 = 9F19l)(3, 1,2,1); c5 = F,1'2J,2)(3,1,2, l), 

where 

and 
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